

Economic Home
Security System

Design Document

Group 42

Goce Trajcevski:
Uma Abu:

Lucas Jedlicka:
Merin Mundt:

Kamini Saldanha:
Sohum Sawant:

Andrew Tran:

Client and Advisor
Full-stack Engineer
Engineering Lead
Project Manager
Full-stack Engineer
Security and Testing Lead
Full-stack Engineer

Email: sdmay20-42@iastate.edu
Website: sdmay20-42.sd.ece.iastate.edu

1

Executive Summary

Development Standards & Practices Used
This semester, we have adopted a waterfall practice for the requirements gathering and
research of this project. Next semester, we will adopt an agile test-driven development
practice. Given that this is an agile environment, we will conduct daily standup on Slack.
Standup is a 5 minute period where each member talks about what they worked on
yesterday, what they will work on today, and whether they are blocked on their current
task. Additionally, we will work in two week sprints where each team member will be
assigned several tasks for that period.

Summary of Requirements

● Camera streaming
● Motion detection
● Push notifications to user if threat was detected
● Continuous streaming until threat has left the frame
● Store clips with stream has ended

Applicable Courses from Iowa State University Curriculum
Computer Science 227 - Object-oriented Programming
Computer Science 228 - Introduction to Data Structures
Computer Science 309 - Software Development Practices
Computer Science 311 - Introduction to the Design and Analysis of Algorithms
Software Engineering 319 - Construction of User Interfaces
Software Engineering 329 - Software Project Management
Software Engineering 339 - Software Architecture and Design

New Skills/Knowledge acquired that was not taught in courses
Designing web applications using a Python/Django and React based tech stack.
Machine Learning libraries to detect threats.
Client and remote motion detection of video feeds.
Docker based development and deployment.
Authentication tokens for security.
Learning Python to development the backend.

2

Table of Contents
1. Introduction 6

1.1 Acknowledgement 6
1.2 Problem and Project Statement 6
1.3 Operational Environment 6
1.4 Requirements 6

1.4.1 Functional Requirements: 6
1.4.2 Non-functional Requirements: 7

1.6 Assumptions and Limitations 8
1.6.1 Assumptions 8
1.6.2 Limitations 9

1.7 Expected End Product and Deliverables 9

2. Specifications and Analysis 10
2.1 Proposed Design 10

2.1.1 Camera Network 10
2.1.2 Processing Software 10
2.1.3 Web Application 11

2.2 Design Analysis 11
2.3 Development Process 12
2.4 Design Plan 12

3. Statement of Work 14
3.1 Previous Work and Literature 14
3.2 Technology Considerations 14
3.3 Task Decomposition 15
3.4 Possible Risks and Risk Management 15
3.5 Project Proposed Milestones and Evaluation Criteria 17
3.6 Project Tracking Procedures 17
3.7 Expected Results and Validation 18

4. Project Timeline, Estimated Resources, and Challenges 18
4.1 Project Timeline 18
4.2 Feasibility Assessment 19
4.3 Personnel Effort Requirements 19
4.4 Other Resource Requirements 20
4.5 Financial Requirements 20

5. Testing and Implementation 20
5.1 Interface Specifications 20
5.2 Hardware and Software 20

3

5.3 Functional Testing 20
5.4 Non-Functional Testing 20
5.5 Process 21
5.6 Results 21

6. Closing Material 21
6.1 Conclusion 21
6.2 References 22
6.3 Appendices 22

List of Figures
Figure 1. Use Case Diagram
Figure 2. Sequence Diagram for Typical Scenario
Figure 3. Backend Component Diagram
Figure 4. Frontend Component Diagram
Figure 5. Design Diagram
Figure 6. Timeline
Figure 7. Testing Process
List of Tables
Table 1. Risk Response Strategies
Table 2. Task Time Estimations

List of Definitions
Event - Something entering the frame
RTSP - Real-time streaming protocol
getUserMediaAPI - Web API for accessing device cameras

4

1. Introduction
1.1 Acknowledgement

Thank you to Goce Trajcevski for serving as the client and advisor for this project. We
acknowledge the time he is taking to work with us and resources he is providing us with
to ensure the success of this project.

1.2 Problem and Project Statement

Given how common theft is in this day and age, we have set out the goal to build an
economic home security system from recycled smartphones. Our security solution will
give users the opportunity to disconnect from the cloud and avoid the monthly fees that
most security systems charge with the use of RTSP which will allow for the extension
and adoption of inplace security systems. We plan to target users who already have IP
cameras or an excess of old smartphones. We are aware that a lot of times, the security
system may pick up on movement that is not harmful to the house owner or user. For
example, when the mailman is walking to the front door to drop off the mail in the
mailbox, the security system will pick up on this movement. The user might not care
about this movement that has been captured. So, there is an option for the user to
delete the clip from storage and move on with their day. A use case diagram for this
possible scenario has been included in section 1.5 of this document.

1.3 Operational Environment

The intended operational environment for the product is a home with areas that have
reliable power and is safe from the elements (i.e. water or extreme temperatures). The
supported phones are intended to be used 24-hours a day with the web application
running. Existing IP cameras will have the ability to be used in conjunction with all
cameras the user sets up and viewable from the web application. A network connection
is also required.

1.4 Requirements

1.4.1 Functional Requirements

FR.1:​ Phones will locally detect motion. Upon detecting motion, the phone will
begin streaming to the backend for processing.

5

To detect motion, the client will look for a change in pixels in its environment
which could mean potential movement. Accomplishing motion detection in the
client will enable us to have an economic use of bandwidth.

FR.2:​ IP cameras supporting RTSP will continuously stream to the backend for
processing.

IP cameras do not have the capability to detect motion in the client. To combat
this, all streams will be sent to the backend to be processed for motion detection.

FR. 3: ​Continuous streaming until the backend sends a kill signal.

Once motion has been detected in the client, the client will begin streaming to the
backend. The backend will establish whether this movement is an object of
interest. Once the object of interest has left the frame for a period of time, the
backend will send a kill signal to the client to stop streaming.

FR. 4:​ Send a push notification if human was detected

As soon as we get one valuable frame of interest of object detection, the user will
be notified via a push notification.

FR. 5: ​ Encourage user to delete clip.

A clip is a completed event stream that is stored as a video file. By asking the
user if a clip can be deleted, we can save storage space.

FR 6: ​Store clip when unseen by user and stream ends.

We will be storing all clips for the user. While we encourage the user to delete
clips, it is valuable to keep them in case the user might want them later.

FR 7: ​Perform object detection on frames.

Detected objects will be matched to an object of interest list such as humans,
then the event will be deemed worthy of notification.

FR 8: ​Motion detection region filters.

6

Allows the blacklisting of common false positive areas, such as a tree in frame
constantly moving.

1.4.2 Non-functional Requirements

NFR 1: ​Support a sub three second response time.

We need our solution to be fast in case of threatening events. As soon as motion
is detected, our users need to be notified.

NFR 2: ​Support more than three streams.

This scalability requirement will allow our users to monitor a larger area, further
securing their residences.

NFR 3: ​Our system will be accessible from any modern web browser e.g.
Android, iOS, Raspberry Pi, laptop, etc.

We want users to be able to have a wide accessibility of our application.

1.5 Intended Users and Uses

Figure 1. Use Case Diagram

7

Actor 1. ​Homeowner in need of a security system with access to unused smartphones or IP
cameras.

Actor 2.​ Homeowner with an existing security system that supports RTSP.

1.6 Assumptions and Limitations

1.6.1 Assumptions

● Server
○ The server may not be able to handle the amount of load coming in

from constant streaming. The client will only start streaming if
motion is detected in smartphones. However, IP cameras will
constantly be streaming constantly because they do not support
motion detection in the client.

● Potential for low performance in old and cheap smartphones
○ Given that users will be using recycled smartphones, there is no

quality assurance for how well the smartphone will work with our
security solution.

1.6.2 Limitations

● Camera limitations in low light and quality
○ Smartphone cameras are not designed to work as well at night.

This will mean low visibility in low light.
○ The quality of the camera will lower with the older the phone is.

● Streaming at a bit rate which can be processed in a timely manner
○ If the bitrate on streams is too high, the processing time will take

too long. However, if the bitrate is too low we cannot ensure optimal
motion detection. In order to achieve optimal performance, we
need to find the correct medium.

● Lack of time and learning curve
○ Some members are not proficient in all the technologies selected.

For example, the entire team is not proficient in Python.
○ Additionally, we have the additional time constraint of 1 year to

finish this project.
● Storage issues

○ We preferably do not want to save all clips because this will take up
a lot of space. To mediate this, we will encourage the user to delete
clips.

1.7 Expected End Product and Deliverables
The expected delivery dates, end product, and deliverables are subject to change.

8

Deliverables:
V1 Design Document (October 6, 2019)
V2 Design Document (November 3, 2019)
V3 Design Document (December 13th, 2019)
Setup database (January 23rd, 2020)
Setup server (February 17th, 2020)
Components completed and tested (Feb 17)
Integration completed and tested (March 18)
System passing acceptance testing (April 17)

2. Specifications and Analysis
2.1 Proposed Design

Figure 2. Sequence Diagram for Typical Scenario

2.1.1 Camera Network

The camera network will be primarily populated via a web application. Users will access
the web application via a modern web browser and then sign into their account. Once
signed in, a page will be available to add the device-in-hand to their network of
streaming cameras. Alternatively they can add an IP camera via a similar interface
where a device IP, username, and password are entered. Once the device has been
added, it will begin performing local motion detection, and communicating over a web

9

socket. The phone will send its footage over a websocket. Communications will be more
strictly defined in section 2.1.2.

2.1.2 Processing Software

The processing software will refer to its database to find list of devices. Connections will
be established with all IP cameras and smartphones. However smartphones won’t
stream video until motion is detected, or a user requests to view the stream. A
connection will be maintained via a web socket for bi-directional communications
without polling. The communications include a kill signal for streaming once the server
determines the footage isn’t of interest. The processing server will heavily utilize threads
to enable concurrent low latency streams processing. For IP cameras, the motion
detection will take place on the server. Object detection will be used to classify threats.
For example, objects of interest would include humans. There will be a list of objects of
interest to limit the number of threats to look for this . To reduce the possibility for false
positives a region of interest will also be defined per device by the user. For example, a
tree in frame would constantly be causing motion in the wind. Motion detection results
outside the region of interest will be ignored. Upon detecting an object of interest in a
region of interest a notification will be generated, and the user will be able to view that
stream by tapping the link.

2.1.3 Web Application

The web application is used to send streams, view streams, view clips, add devices,
define regions of interest, and receive notifications. It serves as a client for the user to
interact with and to communicate with the server.

2.2 Design Analysis
Python with Django framework is the backend programming language of choice. It has
several machine learning libraries that would aid with tasks such as human detection.
Given that the motion detection would be implemented with Django, the API to
communicate between the server and client will also be written in Django.

Given that we do not have much programming experience with Django, there will likely
be a steep learning curve for the team. While this is not ideal, we strongly believe that it
is the right choice given the functionality it can provide to this project.

In terms of the client, React.js is the primary language of choice. React.js will enable us
to create an elegant, user-friendly frontend. Multiple members of the team are also
experienced in this technology.

10

We have been working on implementing user access tokens for security purposes. We
are moving forward with using two tokens, a refresh token and an access token. The
access token will grant access to the user to any internal services. This token can only
be used once and access is taken away immediately after usage. The refresh token is
used to request another access token. Request tokens are kept secure by storing them
in a secure file system or database. They should only be used when requesting an
access token from our server side. This means that we have to also implement security
standards on our backend and also in our database.

Figure 3. Backend Component Diagram

11

Figure 4. Backend Component Diagram

2.3 Development Process
In terms of the software development, as mentioned under the executive summary, we
will be following an agile development practice. The following are reasons for choosing
an agile environment:

● Client engagement and collaboration.
● Quick deliverables.
● Flexibility.
● Focus on the user.

2.4 Design Plan
The security system utilizes a camera network consisting of IP cameras and compatible
smartphones (Android 4.4+ and iOS 11+). Our smartphone selection is restricted due to
browser implementations of the getUserMedia API used to access the cameras. The
backend, which has a tech stack consisting of Python with Django framework, will be
used to move the streams. FFMPEG is used for video transcoding and capturing

12

frames. YoLo object detection is used for placing bounding boxes on humans or cars.
The web application will serve as a view to support two primary functions, linking a
smartphone or IP camera to the security network and viewing the live streams or saved
clips. ReactJS is the library of choice for developing the front end web application.

Figure 5. Design Diagram

13

3. Statement of Work
3.1 Previous Work and Literature

This article describes how to build a security camera network out of old smartphones
[1]. This article describes the same problem statement as the one our senior design
project does. This author talks about information such as placing the smartphone,
setting up the camera IP monitoring station, features of his security camera network and
how to create a surveillance system.

This is a paper written by two Computer Science professors under the topic of
Computer Vision and Pattern Recognition [2]. In this paper, the authors talk about how
they adapted the join-training scheme of Faster RCNN framework from Caffe to
TensorFlow as a baseline implementation of object detection. We are also planning to
also use TensorFlow as a programming language in object detection.

AlfredCamera is a home security smartphone security application that is already on the
market that has the goal of making security free and easy for everyone [3]. To use
AlfredCamera, you need to download the application on two smartphones, sign into
your gmail account on both smartphones, set one camera as the viewer and the other
as the camera to enjoy the application.

3.2 Technology Considerations

● Local solution vs cloud based solution
○ Project is intended to be affordable and easy to implement for users. If a

cloud solution had been selected, the users would have to pay a monthly
fee to use features such as cloud storage and servers.

○ Aiming for an economic solution to a problem that has been addressed
many times. We wanted to create a solution that could be used by simply
owning a computer, some old IP cameras and smartphones that aren’t
being used anymore.

○ Empower users to own their own data given the number of recent security
breaches.

○ Will be using a teammates that can handle the load required for this
project. The server will be free and the electricity needed to run it will also
be free for this use case.

● Python Django
○ Utilize all of the machine learning libraries in Django that would be useful

for our project.

14

○ Encourages rapid development and clean, pragmatic design
○ Some of the busiest sites on the Web leverage Django’s ability to quickly

and flexibly scale.
● Asking users to delete clips

○ We will be saving all clips. To cut down on space, we will encourage the
user to delete the clip.

3.3 Task Decomposition

Frontend

● Web Application
○ Ask user to delete clip (Merin)
○ Motion detection (Uma)
○ Streaming (Merin)
○ Push Notifications (Uma)
○ Mobile and desktop capable UI (Merin)

Backend

● Connection Manager (Kamini and Sohum)
○ Websocket For Smartphone
○ Manage Connection (kill signal, stream forwarding, etc.)

● Low Level IP Camera (Kamini and Andrew)
○ Motion Detection
○ Region Filtering

● Object Detector (Lucas)
○ Find Object of Interest
○ Filter Objects

● Notifications Handler (Sohum and Andrew)
○ Push or Email Notifications

● Clip Handler (Kamini and Andrew)
○ Save, Retrieve, and Delete Clip From Storage

● REST API (Kamini, Andrew, and Sohum)
○ Establish Connection Between Components
○ Create Endpoints

● Security (Sohum)
○ Implement Tokens and Encryption
○ Determine and Solve Security Issues

● Database (Lucas)
○ Set Up

● File Server (Lucas)
○ Set Up

15

3.4 Possible Risks and Risk Management

Technical Risks

TR1. Hardware is insufficient for video processing.
TR2. Limited technical experience or knowledge of the technologies
TR3. Technology used is no longer supported, interoperable, or scalable.
TR4. Unknown security fault leaves project vulnerable.

Cost Risks

CR1. Prices for tools, hardware, or technologies suddenly increase.
CR2. Server has issues or breaks down.
CR3. Inaccurate estimation of cost and budget for the project.

Scheduling Risks

SR1. Inaccurate estimation and scheduling of development time.
SR2. Requirements or features are added to the project.
SR3. Team member is unable to complete tasks on schedule.

Table 1. Risk Response Strategies

Risk Response Strategy

TR1. Replacing hardware with something more capable or trying different processing or
compression combinations.

TR2. Allocate time and resources to seek for required knowledge.

TR3. Stop work on anything related to the issue and seek for a replacement.

TR4. Stop work on anything related to the issue and seek for options to patch the security
flaw.

CR1. Make adjustments to design or increase budget to meet requirements.

CR2. Troubleshoot the server and revert to a working backup server. Ask ETG for
replacement parts or machine if hardware related.

CR3. Seek for free or cheaper alternatives and make changes to the design to match.

SR1. Reduce testing or features to meet requirements and resource constraints.

SR2. Define and prioritize requirements. Reduce testing or features to meet requirements
and resource constraints. Schedule extra time in advance for this situation.

SR3. Each team member should be aware and knowledgeable of each other’s work and be
able to work together to pick up the task.

16

3.5 Project Proposed Milestones and Evaluation Criteria

M1. Conceptual Design
Completed and approved design document. Project architecture, plan, and
requirements are well defined. Non-requirements and features not considered are
addressed with reasoning.

M2. Simple End-to-End Scenario Prototype
The main components for the scenario are complete, reviewed, and pass all tests. Web
application is able to send the device’s camera stream to the server, detect motion in
live camera feed, notify user when camera detects something of interest in view, view
user’s clips the server saved, delete user’s clips from server, and view the live feed from
the camera. REST API is able to communicate with the client and server. Server is able
to receive streams, do object detection on frames, transmit to client if frames contain
something of interest, send signal to client to stop or continue streaming to server, and
contain a database storing user information and clips. Basic encryption and
authentication should be implemented.

M3. Prototype With Multiple Motion Detecting Phones
The main components for this scenario are complete, reviewed, and pass all tests. Web
application is able to send camera streams from multiple devices to the server, detect
motion in live camera feed for each, sort user’s clips, and view the live feed from any of
the user’s cameras.

M4. Prototype With Motion Detecting Phones and Non-motion Detecting Phones
and IP Cameras
The main components for this scenario are complete, reviewed, and pass all tests.

M5. Testing
Reserved for future features and final design. Individual systems at this point is working
without issue alone.

M6. Final Product
All documentation, reports, and code are complete, reviewed, and tested. The product
meets all requirements and performs as expected with no bugs and performance
issues. Security is considered at all points.

17

3.6 Project Tracking Procedures

Issues will be created from requirements and put on GitLab’s backlog. Issues with
highest priority are marked with the “To-do” tag. In-progress issues are marked with a
“Doing” tag so others will know tasks being worked on and contribute if deemed
necessary. Once complete, the issue is marked with a “Done” tag.

Weekly reports will also be done which include a work summary, accomplishments,
pending issues, individual contributions, and future plans.

3.7 Expected Results and Validation

The desired outcome for this project is to:

● Create an economic home security solution that is easy to use.
● Create an economic home security solution that does not cost much to

implement.
● All functional and non-functional requirements need to be met.
● The end result is expected to be bug free and solid, performing as expected as a

security system.

4. Project Timeline, Estimated Resources, and
Challenges
4.1 Project Timeline

Figure 6. Timeline

We are proposing a fast timeline in order to leave time for any unforeseen
circumstances or issues that may arise during the development of our project.

18

The first semester of our project will pertain of designing and going through use case
scenarios. The second semester is as follows. We start with setting up the major
components of our project. Those will be setting up our web application, database, and
server. We have assigned subteams to handle these components. Server side
backend will be handled by Andrew Tran, Kamini Saldhana, and Sohum Sawant. The
Web Application will be developed by Uma Abu and Merin Mundt. The processing and
database will be handled by Lucas Jedlicka. After this we will test all components to
ensure that they are up to standard. Following the development and testing of our
components we will begin working on communication between all of them. We will finish
our project by scaling the solution to support more streams and then conducting final
testing on the project.

4.2 Feasibility Assessment

Realistically, scaling our solution to support multiple camera streams or cloud
technology will be a challenge. The hardware that we have can only support three
streams. Without acquiring better hardware we cannot test to see if adding more
streams will cause any problems. The same applies to possible cloud solutions. We do
not have the capability to test if our solution will work for more and more streams.

4.3 Personnel Effort Requirements

The first tasks for the implementation of our project will be for everyone on the team to
get their development environment set up. This will involve install/cloning the git repo,
install the libraries and frameworks needed for development and also familiarizing
ourselves with the libraries and frameworks. We expect that these tasks will not take too
long and so we will allocate a few hours for them. The next tasks will be to set up the
various components needed and possible host them. The components include the
database to store our streams, the server processing the streams and the web
application that will be sending the streams to the server. This will be a decent amount
of work and so we will budget for at least three weeks for this task including testing. The
tasks will be broken down into smaller parts and split between the members of the
team. The next major task will be to create communication between the three major
components. This will involve setting up API’s for the web application to communicate
with the server and for the server to send data back to the web application in the form of
notification after it has done its processing. This will also include sending data from
server to the database and having the web application retrieve data from the database.
This will be a decent amount of work and so we are budgeting for about three weeks on
the tasks. Like before, they will be split into smaller components and assigned to team
members. Finally we plan to scale our application by introducing more smartphones for
one user. This will include scaling the server up to meet demands and handing motion

19

detection on the smartphones before sending the data to the server. This will take
another 2 weeks. Lastly, we will do major testing of the whole application focusing on
functionality and security. This will take a week.

Table 2. Task Time Estimations

Task Time

1 : Environment set up 3 hrs

2: Set up components 3 weeks

3: Communication between
components

2 weeks

4: Scaling 2 weeks

5: Testing and Security 1 week

4.4 Other Resource Requirements

We will require a server, mobile devices, and IP Cameras to test our home security
system. These are provided by the team at no cost.

4.5 Financial Requirements

We have a total budget of $200 to spend on any project costs for the duration of 1 year
given to us by our clients.

5. Testing and Implementation
5.1 Interface Specifications

We will test the communication between the backend and frontend by testing our REST
API with the mockito framework.

We decided to choose Mockito as it allows us to mock object or service functionality in
unit testing. This will prove useful as it allows us to isolate particular components and
services without having to make real time calls to their respective functions.

5.2 Hardware and Software

We will utilize the mockito testing framework to test the components that we develop in
either the frontend or backend. We will have to test whether each function returns what
we expect it to. How the mockito framework will be utilized is described in the previous
section.

20

5.3 Functional Testing

We will conduct unit testing on each individual component. This will allow us to isolate
potential bugs on the component level and prevent those bugs from affection other parts
of the system.

Following the unit testing on components, we will conduct integration testing when trying
to get the components to work in conjunction. This will allow us to testing individual
component segments prior to full system or acceptance testing.

This will lead to us conducting the final system and acceptance testing. This is required
in order to ensure that we deliver a polished final product which is error free.

5.4 Non-Functional Testing

One of our primary objectives will be to test the security of the overall system. We need
to ensure that our project does not expose our users to things such as, others viewing
the stream feeds, foreign parties disabling camera feeds, etc.

We will also conduct testing on the performance of the system. We will need to ensure
our system provides prompt detection of motion as even a delay of a few seconds may
determine whether or not a crime gets recorded. Our users are relying on this system
as a means of security and we need to ensure that our product can perform well.

5.5 Process

Figure 7. Testing Process

21

5.6 Results

We have not yet begun the testing of the system. We cannot report results of testing
currently but plan to reform this section in the next semester.

Our largest hurdle in implementation will be having to learn the technologies that we
need to use to create our system. While our team does have general knowledge on all
technologies being used, there is still much to learn. We have been learning over this
semester but we may run into issues with implementation due to the lack of familiarity
with the technologies.

We have listed strategies above to mitigate this issue.

6. Closing Material
6.1 Conclusion

So far we have come up with a full system architecture along with the requirements for
all individual components. We have also decided which technologies we will implement
our solution in and the testing schedule and frameworks for the project.

Our goal is to provide a security solution that reduces the financial strain of existing
security systems. We want to develop a system that does not require equipment
purchases or monthly fees.

The main debate in our choice of a solution was in choosing a local server rather than a
cloud solution. We chose to go with a local solution as cloud services are more
expensive then having the user use a machine that they already own to process the
streams. In the future we plan to scale to cloud support if we can get enough users to
justify the cost.

6.2 References
[1]​ ​Dube, Ryan. “How to Build a Security Camera Network Out Of Old Smartphones.”
MakeUseOf, 12 July 2017,
https://www.makeuseof.com/tag/how-to-build-a-security-camera-network-out-of-old-smartphone
s/​.

[2] Chen, et al. “An Implementation of Faster RCNN with Study for Region Sampling.” ArXiv.org,
8 Feb. 2017, ​https://arxiv.org/abs/1702.02138​.

[3] Similar Smartphone Security Application “AlfredCamera.” AlfredCamera,
https://alfred.camera/​.

22

https://www.makeuseof.com/tag/how-to-build-a-security-camera-network-out-of-old-smartphones/
https://www.makeuseof.com/tag/how-to-build-a-security-camera-network-out-of-old-smartphones/
https://arxiv.org/abs/1702.02138
https://alfred.camera/

