
SE/EE/CPRE 492
02/28 - 03/12
Project Title: Economic Home Security System
Group No: 42
Client/Advisor: Goce Trajcevski

Bi-weekly Report 4

Team Members:
Lucas Jedlicka - Lead Engineer DevOps
Uma Abu - Frontend
Merin Mundt - Frontend
Kamini Saldanha - Backend
Sohum Sawant - Backend
Andrew Tran - Backend

Bi-weekly Summary: We have added user authentication throughout the API and made
necessary changes to accommodate that on the frontend. The frontend has been able to view
clips directly from the server’s file system and display it. Progress has been made for streaming
data between client and server through peer-to-peer connections and websockets.
WebRTC/aiortc are some of the tools we are using to do so. We were able to refactor the
Django project as well and are prepared to continue adding functionality to the project.

Past Iteration Accomplishments:
Lucas Jedlicka: Formed milestone activities and sorted out who desired which tasks.
Researched Coturn, an application required for signaling and routing of WebRTC streams. For
testing it appears the public servers will work, however in the internal ISU network, the google
server couldn’t determine our public IP (there isn’t one). I’ve made a request to ETG to see if it’s
acceptable to host one or if they have one setup already for their VoIP system. I researched
sending emails within Python, and found a fault in my earlier expectation. Mail sending will work
from the server if we point to ISU’s SMTP.
Uma Abu: Looked into webrtc on the frontend. I read the documentation and with some help of
tutorials online, I was able to implement peer to peer communication in between two clients on
the react application. After doing this, I started looking for ways to send data between two
clients that are not on the same machine. I realized I needed a web socket so I implemented a
websocket and got that working. I was able to achieve video streaming between two node
clients on different computers. The next step was to do the same streaming but between a
server and the react client. I looked into webrtc but did not find any examples of a server written
in python that connected to a react client. So I started looking into aiortc and found a server
written in python that implemented webrtc/aiortc and fetched streams from a js client. This was a
good starting point. I started working on trying to refactor the python server to fetch the streams
from a websocket connection rather than fetching it from a client that the socket is running.
Merin Mundt: These past two weeks I have been focusing on getting streams and clips to show
up and be retrieved from the back end. I worked on retrieving a URL and then using that URL to
display on the clips page of the application. Currently have up to 4 videos showing up via URL
but am working on getting many to show up with time stamps.
Kamini Saldanha:
These past two weeks my main focus was getting the web sockets component of our project
working. I have been working with experimenting with the library WebRTC/aioRTC. I have been
working to understand how the stream is sent between the client and the server. My main
priority has been figuring out how to save this stream to the filesystem after it has finished
recording.
Sohum Sawant: These past two weeks have been spent working on setting up a prototype
server to receive and redistribute video streams from our client side. In order to accomplish this,
I looked into different python libraries associated with WebRTC. The library that I decided to go
with is called aiortc. The next step was to create an endpoint which could establish a peer to
peer connection with a client. I looked into both a websocket connection and also into
peer-to-peer mapping. Currently, my prototype server uses peer-to-peer mappings but the plan
is to move to a websocket solution.

Andrew Tran: Researched possible libraries for communication and sockets for python and ran
into aiortc. Fixed duplicate file issues on backend, there were many unnecessary files that could
cause problems running the project. Was able to get the project working locally with the new
database in order to refactor the project into separate apps for modularity and ability to split
work without having a lot of merge conflicts. Created a new user for the database that works
with Django both locally and on the server. User authentication is now implemented throughout
the API and all the changes necessary were made to use the Django user auth model. The
endpoint for getting clips given a user id has been added as well.

Pending Issues (optional):
Lucas Jedlicka: ETG email about STUN.
Uma Abu: N/A
Merin Mundt: N/A
Kamini Saldanha: Still figuring out how to create an mp4 file with the stream to be able to save
that in the filesystem on the server.
Sohum Sawant: N/A
Andrew Tran: Lot’s of backend dependency errors.

Individual Contributions:

Name Contribution Biweekly
hours

Total hours

Uma Abu ● Created peer to peer
connection between two
clients on the frontend

● Implemented a signalling
server to send data between
the clients

● Implemented a websocket to
send data between two
clients that are on different
computers

● Worked on the signalling
server in python to see if it
can fetch stream from web
socket

13 36

Lucas Jedlicka ● Researched Coturn
● Tasked out milestone for

basic scenario
● Put out fires caused by my

poor CD for python
● Rewrote python docker

container deployment

12 36

Sohum Sawant ● Created a prototype server to
receive and redistribute video
streams from our front end.

● Implemented asynchronous
functionality in our stream
server to handle connections
opening and closing

● Did research on the aiortc
library

13 46

Merin Mundt ● Created clips webpage
● Retrieved URLs for clips
● Clips showing up on clip page
● Made presentation for peer

presentation video

8 40

Kamini Saldanha ● Created a prototype server to
try to understand how the
streams are sent between the

12 44

client and server
● Tried to create and save a

basic txt file on local
computer and server

● Trying to figure out how to
create a mp4 file from the
stream and save that locally
and then on the server

Andrew Tran ● Removed bad files in
backend and refactored the
project.

● Found aiortc.
● Did some code cleanup.
● Added user authentication to

the API.
● Added endpoint to get all

clips for a user.

12 36

Plans for the upcoming iteration:
Lucas Jedlicka: Setup TURN/STUN server if ETG doesn’t have a host, and if we’re lucky,
begin vision processing in the backend.
Uma Abu: Try to find another way to send video streams to a server if aiortc does not work.
Merin Mundt: Getting all clips showing up from the backend. Work on personalizing the user
experience.
Kamini Saldanha: Help work on getting streams to be sent between client and server as well
as sending emails as notifications.
Sohum Sawant: Move from peer-to-peer mappings to a websocket solution to handle incoming
and outgoing connections from our server.
Andrew Tran: Work on fixing errors and look into adding motion detection to the server.

Summary of Advisor Meeting:
Discussed task decompositions and milestones. Focus on getting our simple scenario
implemented. We also discussed creating different folders for sections of the final report in order
to note things down and compile them later rather than relying on memory in the future.
Considerations: reactivity to events in our system, websockets, and the expansion of use to
someone you trust (like a family member) who can use the system.

